

1

Table of Contents
Preface

ES2015

let and const

Arrow Functions

Classes

Default parameters

Template Literals

Destructuring assignments

Enhanced Object Literals

For-of loop

Promises

Modules

New String methods

New Object methods

The spread operator

Set

Map

Generators

ES2016

Array.prototype.includes()

Exponentiation Operator

ES2017

String padding

Object.values()

Object.entries()

Object.getOwnPropertyDescriptors()

Trailing commas

Async functions

Shared Memory and Atomics

ES2018

2

Rest/Spread Properties

Asynchronous iteration

Promise.prototype.finally()

Regular Expression improvements

ESNext

Array.prototype.{flat,flatMap}

Optional catch binding

Object.fromEntries()

String.prototype.{trimStart,trimEnd}

Symbol.prototype.description

JSON improvements

Well-formed JSON.stringify()

Function.prototype.toString()

3

Preface

Welcome!
I wrote this book to help you move from pre-ES6 knowledge of JavaScript and get you
quickly up to speed with the most recent advancements of the language.

JavaScript today is in the privileged position to be the only language that can run natively in
the browser, and is highly integrated and optimized for that.

The future of JavaScript is going to be brilliant. Keeping up with the changes shouldn't be
harder than it already is, and my goal here is to give you a quick yet comprehensive
overview of the new stuff available to us.

Thank you for getting this ebook. I hope its content will help you achieve what you want.

Flavio

You can reach me via email at flavio@flaviocopes.com, on Twitter @flaviocopes.

My website is flaviocopes.com.

Introduction to ECMAScript
Whenever you read about JavaScript you'll inevitably see one of these terms:

ES3
ES5
ES6
ES7
ES8
ES2015
ES2016
ES2017
ECMAScript 2017
ECMAScript 2016
ECMAScript 2015

What do they mean?

They are all referring to a standard, called ECMAScript.

mailto:flavio@flaviocopes.com
https://twitter.com/flaviocopes
https://flaviocopes.com/

4

ECMAScript is the standard upon which JavaScript is based, and it's often abbreviated
to ES.

Beside JavaScript, other languages implement(ed) ECMAScript, including:

ActionScript (the Flash scripting language), which is losing popularity since Flash will be
officially discontinued in 2020
JScript (the Microsoft scripting dialect), since at the time JavaScript was supported only
by Netscape and the browser wars were at their peak, Microsoft had to build its own
version for Internet Explorer

but of course JavaScript is the most popular and widely used implementation of ES.

Why this weird name? Ecma International is a Swiss standards association who is in
charge of defining international standards.

When JavaScript was created, it was presented by Netscape and Sun Microsystems to
Ecma and they gave it the name ECMA-262 alias ECMAScript.

This press release by Netscape and Sun Microsystems (the maker of Java) might help figure
out the name choice, which might include legal and branding issues by Microsoft which was
in the committee, according to Wikipedia.

After IE9, Microsoft stopped branding its ES support in browsers as JScript and started
calling it JavaScript (at least, I could not find references to it any more)

So as of 201x, the only popular language supporting the ECMAScript spec is JavaScript.

Current ECMAScript version
The current ECMAScript version is ES2018.

It was released in June 2018.

What is TC39
TC39 is the committee that evolves JavaScript.

The members of TC39 are companies involved in JavaScript and browser vendors, including
Mozilla, Google, Facebook, Apple, Microsoft, Intel, PayPal, SalesForce and others.

Every standard version proposal must go through various stages, which are explained here.

ES Versions

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://en.wikipedia.org/wiki/ECMAScript
https://tc39.github.io/process-document/

5

I found it puzzling why sometimes an ES version is referenced by edition number and
sometimes by year, and I am confused by the year by chance being -1 on the number, which
adds to the general confusion around JS/ES 😄

Before ES2015, ECMAScript specifications were commonly called by their edition. So ES5 is
the official name for the ECMAScript specification update published in 2009.

Why does this happen? During the process that led to ES2015, the name was changed from
ES6 to ES2015, but since this was done late, people still referenced it as ES6, and the
community has not left the edition naming behind - the world is still calling ES releases by
edition number.

This table should clear things a bit:

Edition Official name Date published

ES9 ES2018 June 2018

ES8 ES2017 June 2017

ES7 ES2016 June 2016

ES6 ES2015 June 2015

ES5.1 ES5.1 June 2011

ES5 ES5 December 2009

ES4 ES4 Abandoned

ES3 ES3 December 1999

ES2 ES2 June 1998

ES1 ES1 June 1997

Let's dive into the specific features added to JavaScript since ES5.

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/C/calibre_5.40.0_tmp_8flpynwo/_pue70nc_pdf_out/es2018
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/C/calibre_5.40.0_tmp_8flpynwo/_pue70nc_pdf_out/es2017
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/C/calibre_5.40.0_tmp_8flpynwo/_pue70nc_pdf_out/es2016
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/C/calibre_5.40.0_tmp_8flpynwo/_pue70nc_pdf_out/es6

6

ES2015

7

let and const
Until ES2015, var was the only construct available for defining variables.

var a = 0

If you forget to add var you will be assigning a value to an undeclared variable, and the
results might vary.

In modern environments, with strict mode enabled, you will get an error. In older
environments (or with strict mode disabled) this will initialize the variable and assign it to the
global object.

If you don't initialize the variable when you declare it, it will have the undefined value until
you assign a value to it.

var a //typeof a === 'undefined'

You can redeclare the variable many times, overriding it:

var a = 1
var a = 2

You can also declare multiple variables at once in the same statement:

var a = 1, b = 2

The scope is the portion of code where the variable is visible.

A variable initialized with var outside of any function is assigned to the global object, has a
global scope and is visible everywhere. A variable initialized with var inside a function is
assigned to that function, it's local and is visible only inside it, just like a function parameter.

Any variable defined in a function with the same name as a global variable takes
precedence over the global variable, shadowing it.

It's important to understand that a block (identified by a pair of curly braces) does not define
a new scope. A new scope is only created when a function is created, because var does
not have block scope, but function scope.

8

Inside a function, any variable defined in it is visible throughout all the function code, even if
the variable is declared at the end of the function it can still be referenced in the beginning,
because JavaScript before executing the code actually moves all variables on top
(something that is called hoisting). To avoid confusion, always declare variables at the
beginning of a function.

Using let
 let is a new feature introduced in ES2015 and it's essentially a block scoped version of
 var . Its scope is limited to the block, statement or expression where it's defined, and all the
contained inner blocks.

Modern JavaScript developers might choose to only use let and completely discard the
use of var .

If let seems an obscure term, just read let color = 'red' as let the color be red
and it all makes much more sense

Defining let outside of any function - contrary to var - does not create a global variable.

Using const
Variables declared with var or let can be changed later on in the program, and
reassigned. Once a const is initialized, its value can never be changed again, and it can't
be reassigned to a different value.

const a = 'test'

We can't assign a different literal to the a const. We can however mutate a if it's an
object that provides methods that mutate its contents.

 const does not provide immutability, just makes sure that the reference can't be changed.

 const has block scope, same as let .

Modern JavaScript developers might choose to always use const for variables that don't
need to be reassigned later in the program, because we should always use the simplest
construct available to avoid making errors down the road.

9

Arrow Functions
Arrow functions, since their introduction, changed forever how JavaScript code looks (and
works).

In my opinion this change was so welcoming that you now rarely see the usage of the
 function keyword in modern codebases. Although that has still its usage.

Visually, it’s a simple and welcome change, which allows you to write functions with a shorter
syntax, from:

const myFunction = function() {
 //...
}

to

const myFunction = () => {
 //...
}

If the function body contains just a single statement, you can omit the brackets and write all
on a single line:

const myFunction = () => doSomething()

Parameters are passed in the parentheses:

const myFunction = (param1, param2) => doSomething(param1, param2)

If you have one (and just one) parameter, you could omit the parentheses completely:

const myFunction = param => doSomething(param)

Thanks to this short syntax, arrow functions encourage the use of small functions.

Implicit return
Arrow functions allow you to have an implicit return: values are returned without having to
use the return keyword.

10

It works when there is a one-line statement in the function body:

const myFunction = () => 'test'

myFunction() //'test'

Another example, when returning an object, remember to wrap the curly brackets in
parentheses to avoid it being considered the wrapping function body brackets:

const myFunction = () => ({ value: 'test' })

myFunction() //{value: 'test'}

How this works in arrow functions
 this is a concept that can be complicated to grasp, as it varies a lot depending on the
context and also varies depending on the mode of JavaScript (strict mode or not).

It's important to clarify this concept because arrow functions behave very differently
compared to regular functions.

When defined as a method of an object, in a regular function this refers to the object, so
you can do:

const car = {
 model: 'Fiesta',
 manufacturer: 'Ford',
 fullName: function() {
 return `${this.manufacturer} ${this.model}`
 }
}

calling car.fullName() will return "Ford Fiesta" .

The this scope with arrow functions is inherited from the execution context. An arrow
function does not bind this at all, so its value will be looked up in the call stack, so in this
code car.fullName() will not work, and will return the string "undefined undefined" :

11

const car = {
 model: 'Fiesta',
 manufacturer: 'Ford',
 fullName: () => {
 return `${this.manufacturer} ${this.model}`
 }
}

Due to this, arrow functions are not suited as object methods.

Arrow functions cannot be used as constructors either, when instantiating an object will raise
a TypeError .

This is where regular functions should be used instead, when dynamic context is not
needed.

This is also a problem when handling events. DOM Event listeners set this to be the
target element, and if you rely on this in an event handler, a regular function is necessary:

const link = document.querySelector('#link')
link.addEventListener('click', () => {
 // this === window
})

const link = document.querySelector('#link')
link.addEventListener('click', function() {
 // this === link
})

12

Classes
JavaScript has a quite uncommon way to implement inheritance: prototypical inheritance.
Prototypal inheritance, while in my opinion great, is unlike most other popular programming
language's implementation of inheritance, which is class-based.

People coming from Java or Python or other languages had a hard time understanding the
intricacies of prototypal inheritance, so the ECMAScript committee decided to sprinkle
syntactic sugar on top of prototypical inheritance so that it resembles how class-based
inheritance works in other popular implementations.

This is important: JavaScript under the hood is still the same, and you can access an object
prototype in the usual way.

A class definition
This is how a class looks.

class Person {
 constructor(name) {
 this.name = name
 }

 hello() {
 return 'Hello, I am ' + this.name + '.'
 }
}

A class has an identifier, which we can use to create new objects using new

ClassIdentifier() .

When the object is initialized, the constructor method is called, with any parameters
passed.

A class also has as many methods as it needs. In this case hello is a method and can be
called on all objects derived from this class:

const flavio = new Person('Flavio')
flavio.hello()

Class inheritance

https://flaviocopes.com/javascript-prototypal-inheritance/

13

A class can extend another class, and objects initialized using that class inherit all the
methods of both classes.

If the inherited class has a method with the same name as one of the classes higher in the
hierarchy, the closest method takes precedence:

class Programmer extends Person {
 hello() {
 return super.hello() + ' I am a programmer.'
 }
}

const flavio = new Programmer('Flavio')
flavio.hello()

(the above program prints "Hello, I am Flavio. I am a programmer.")

Classes do not have explicit class variable declarations, but you must initialize any variable
in the constructor.

Inside a class, you can reference the parent class calling super() .

Static methods
Normally methods are defined on the instance, not on the class.

Static methods are executed on the class instead:

class Person {
 static genericHello() {
 return 'Hello'
 }
}

Person.genericHello() //Hello

Private methods
JavaScript does not have a built-in way to define private or protected methods.

There are workarounds, but I won't describe them here.

Getters and setters

14

You can add methods prefixed with get or set to create a getter and setter, which are two
different pieces of code that are executed based on what you are doing: accessing the
variable, or modifying its value.

class Person {
 constructor(name) {
 this.name = name
 }

 set name(value) {
 this.name = value
 }

 get name() {
 return this.name
 }
}

If you only have a getter, the property cannot be set, and any attempt at doing so will be
ignored:

class Person {
 constructor(name) {
 this.name = name
 }

 get name() {
 return this.name
 }
}

If you only have a setter, you can change the value but not access it from the outside:

class Person {
 constructor(name) {
 this.name = name
 }

 set name(value) {
 this.name = value
 }
}

15

Default parameters
Default parameter values have been introduced in ES2015, and are widely implemented in
modern browsers.

This is a doSomething function which accepts param1 .

const doSomething = (param1) => {

}

We can add a default value for param1 if the function is invoked without specifying a
parameter:

const doSomething = (param1 = 'test') => {

}

This works for more parameters as well, of course:

const doSomething = (param1 = 'test', param2 = 'test2') => {

}

What if you have an unique object with parameters values in it?

Once upon a time, if we had to pass an object of options to a function, in order to have
default values of those options if one of them was not defined, you had to add a little bit of
code inside the function:

const colorize = (options) => {
 if (!options) {
 options = {}
 }

 const color = ('color' in options) ? options.color : 'yellow'
 ...
}

With destructuring you can provide default values, which simplifies the code a lot:

16

const colorize = ({ color = 'yellow' }) => {
 ...
}

If no object is passed when calling our colorize function, similarly we can assign an empty
object by default:

const spin = ({ color = 'yellow' } = {}) => {
 ...
}

17

Template Literals
Template Literals allow you to work with strings in a novel way compared to ES5 and below.

The syntax at a first glance is very simple, just use backticks instead of single or double
quotes:

const a_string = `something`

They are unique because they provide a lot of features that normal strings built with quotes
do not, in particular:

they offer a great syntax to define multiline strings
they provide an easy way to interpolate variables and expressions in strings
they allow you to create DSLs with template tags (DSL means domain specific
language, and it's for example used in React by Styled Components, to define CSS for
a component)

Let's dive into each of these in detail.

Multiline strings
Pre-ES6, to create a string spanning over two lines you had to use the \ character at the
end of a line:

const string =
 'first part \
second part'

This allows to create a string on 2 lines, but it's rendered on just one line:

 first part second part

To render the string on multiple lines as well, you explicitly need to add \n at the end of
each line, like this:

const string =
 'first line\n \
second line'

or

18

const string = 'first line\n' + 'second line'

Template literals make multiline strings much simpler.

Once a template literal is opened with the backtick, you just press enter to create a new line,
with no special characters, and it's rendered as-is:

const string = `Hey
this

string
is awesome!`

Keep in mind that space is meaningful, so doing this:

const string = `First
 Second`

is going to create a string like this:

First
 Second

an easy way to fix this problem is by having an empty first line, and appending the trim()
method right after the closing backtick, which will eliminate any space before the first
character:

const string = `
First
Second`.trim()

Interpolation
Template literals provide an easy way to interpolate variables and expressions into strings.

You do so by using the ${...} syntax:

const var = 'test'
const string = `something ${var}` //something test

inside the ${} you can add anything, even expressions:

19

const string = `something ${1 + 2 + 3}`
const string2 = `something ${foo() ? 'x' : 'y'}`

Template tags
Tagged templates is one feature that might sound less useful at first for you, but it's actually
used by lots of popular libraries around, like Styled Components or Apollo, the GraphQL
client/server lib, so it's essential to understand how it works.

In Styled Components template tags are used to define CSS strings:

const Button = styled.button`
 font-size: 1.5em;
 background-color: black;
 color: white;
`

In Apollo template tags are used to define a GraphQL query schema:

const query = gql`
 query {
 ...
 }
`

The styled.button and gql template tags highlighted in those examples are just
functions:

function gql(literals, ...expressions) {}

this function returns a string, which can be the result of any kind of computation.

 literals is an array containing the template literal content tokenized by the expressions
interpolations.

 expressions contains all the interpolations.

If we take an example above:

const string = `something ${1 + 2 + 3}`

20

 literals is an array with two items. The first is something , the string until the first
interpolation, and the second is an empty string, the space between the end of the first
interpolation (we only have one) and the end of the string.

 expressions in this case is an array with a single item, 6 .

A more complex example is:

const string = `something
another ${'x'}
new line ${1 + 2 + 3}
test`

in this case literals is an array where the first item is:

;`something
another `

the second is:

;`
new line `

and the third is:

;`
test`

 expressions in this case is an array with two items, x and 6 .

The function that is passed those values can do anything with them, and this is the power of
this kind feature.

The most simple example is replicating what the string interpolation does, by joining
 literals and expressions :

const interpolated = interpolate`I paid ${10}€`

and this is how interpolate works:

21

function interpolate(literals, ...expressions) {
 let string = ``
 for (const [i, val] of expressions) {
 string += literals[i] + val
 }
 string += literals[literals.length - 1]
 return string
}

22

Destructuring assignments
Given an object, you can extract just some values and put them into named variables:

const person = {
 firstName: 'Tom',
 lastName: 'Cruise',
 actor: true,
 age: 54, //made up
}

const {firstName: name, age} = person

 name and age contain the desired values.

The syntax also works on arrays:

const a = [1,2,3,4,5]
const [first, second] = a

This statement creates 3 new variables by getting the items with index 0, 1, 4 from the array
 a :

const [first, second, , , fifth] = a

23

Enhanced Object Literals
In ES2015 Object Literals gained superpowers.

Simpler syntax to include variables

Instead of doing

const something = 'y'
const x = {
 something: something
}

you can do

const something = 'y'
const x = {
 something
}

Prototype

A prototype can be specified with

const anObject = { y: 'y' }
const x = {
 __proto__: anObject
}

super()

const anObject = { y: 'y', test: () => 'zoo' }
const x = {
 __proto__: anObject,
 test() {
 return super.test() + 'x'
 }
}
x.test() //zoox

Dynamic properties

24

const x = {
 ['a' + '_' + 'b']: 'z'
}
x.a_b //z

25

For-of loop
ES5 back in 2009 introduced forEach() loops. While nice, they offered no way to break,
like for loops always did.

ES2015 introduced the for-of loop, which combines the conciseness of forEach with the
ability to break:

//iterate over the value
for (const v of ['a', 'b', 'c']) {
 console.log(v);
}

//get the index as well, using `entries()`
for (const [i, v] of ['a', 'b', 'c'].entries()) {
 console.log(index) //index
 console.log(value) //value
}

Notice the use of const . This loop creates a new scope in every iteration, so we can safely
use that instead of let .

The difference with for...in is:

 for...of iterates over the property values
 for...in iterates the property names

26

Promises
A promise is commonly defined as a proxy for a value that will eventually become
available.

Promises are one way to deal with asynchronous code, without writing too many callbacks in
your code.

Async functions use the promises API as their building block, so understanding them is
fundamental even if in newer code you'll likely use async functions instead of promises.

How promises work, in brief
Once a promise has been called, it will start in pending state. This means that the caller
function continues the execution, while it waits for the promise to do its own processing, and
give the caller function some feedback.

At this point, the caller function waits for it to either return the promise in a resolved state,
or in a rejected state, but as you know JavaScript is asynchronous, so the function
continues its execution while the promise does it work.

Which JS API use promises?
In addition to your own code and library code, promises are used by standard modern Web
APIs such as:

the Battery API
the Fetch API
Service Workers

It's unlikely that in modern JavaScript you'll find yourself not using promises, so let's start
diving right into them.

Creating a promise
The Promise API exposes a Promise constructor, which you initialize using new Promise() :

https://flaviocopes.com/javascript/
https://flaviocopes.com/fetch-api/
https://flaviocopes.com/service-workers/

27

let done = true

const isItDoneYet = new Promise((resolve, reject) => {
 if (done) {
 const workDone = 'Here is the thing I built'
 resolve(workDone)
 } else {
 const why = 'Still working on something else'
 reject(why)
 }
})

As you can see the promise checks the done global constant, and if that's true, we return a
resolved promise, otherwise a rejected promise.

Using resolve and reject we can communicate back a value, in the above case we just
return a string, but it could be an object as well.

Consuming a promise
In the last section, we introduced how a promise is created.

Now let's see how the promise can be consumed or used.

const isItDoneYet = new Promise()
//...

const checkIfItsDone = () => {
 isItDoneYet
 .then(ok => {
 console.log(ok)
 })
 .catch(err => {
 console.error(err)
 })
}

Running checkIfItsDone() will execute the isItDoneYet() promise and will wait for it to
resolve, using the then callback, and if there is an error, it will handle it in the catch
callback.

Chaining promises

28

A promise can be returned to another promise, creating a chain of promises.

A great example of chaining promises is given by the Fetch API, a layer on top of the
XMLHttpRequest API, which we can use to get a resource and queue a chain of promises to
execute when the resource is fetched.

The Fetch API is a promise-based mechanism, and calling fetch() is equivalent to defining
our own promise using new Promise() .

Example of chaining promises

const status = response => {
 if (response.status >= 200 && response.status < 300) {
 return Promise.resolve(response)
 }
 return Promise.reject(new Error(response.statusText))
}

const json = response => response.json()

fetch('/todos.json')
 .then(status)
 .then(json)
 .then(data => {
 console.log('Request succeeded with JSON response', data)
 })
 .catch(error => {
 console.log('Request failed', error)
 })

In this example, we call fetch() to get a list of TODO items from the todos.json file found
in the domain root, and we create a chain of promises.

Running fetch() returns a response, which has many properties, and within those we
reference:

 status , a numeric value representing the HTTP status code
 statusText , a status message, which is OK if the request succeeded

 response also has a json() method, which returns a promise that will resolve with the
content of the body processed and transformed into JSON.

So given those premises, this is what happens: the first promise in the chain is a function
that we defined, called status() , that checks the response status and if it's not a success
response (between 200 and 299), it rejects the promise.

https://flaviocopes.com/fetch-api
https://fetch.spec.whatwg.org/#concept-response

29

This operation will cause the promise chain to skip all the chained promises listed and will
skip directly to the catch() statement at the bottom, logging the Request failed text along
with the error message.

If that succeeds instead, it calls the json() function we defined. Since the previous promise,
when successful, returned the response object, we get it as an input to the second promise.

In this case, we return the data JSON processed, so the third promise receives the JSON
directly:

.then((data) => {
 console.log('Request succeeded with JSON response', data)
})

and we log it to the console.

Handling errors
In the above example, in the previous section, we had a catch that was appended to the
chain of promises.

When anything in the chain of promises fails and raises an error or rejects the promise, the
control goes to the nearest catch() statement down the chain.

new Promise((resolve, reject) => {
 throw new Error('Error')
}).catch(err => {
 console.error(err)
})

// or

new Promise((resolve, reject) => {
 reject('Error')
}).catch(err => {
 console.error(err)
})

Cascading errors
If inside the catch() you raise an error, you can append a second catch() to handle it,
and so on.

30

new Promise((resolve, reject) => {
 throw new Error('Error')
})
 .catch(err => {
 throw new Error('Error')
 })
 .catch(err => {
 console.error(err)
 })

Orchestrating promises

 Promise.all()

If you need to synchronize different promises, Promise.all() helps you define a list of
promises, and execute something when they are all resolved.

Example:

const f1 = fetch('/something.json')
const f2 = fetch('/something2.json')

Promise.all([f1, f2])
 .then(res => {
 console.log('Array of results', res)
 })
 .catch(err => {
 console.error(err)
 })

The ES2015 destructuring assignment syntax allows you to also do

Promise.all([f1, f2]).then(([res1, res2]) => {
 console.log('Results', res1, res2)
})

You are not limited to using fetch of course, any promise is good to go.

 Promise.race()

 Promise.race() runs as soon as one of the promises you pass to it resolves, and it runs the
attached callback just once with the result of the first promise resolved.

Example:

31

const promiseOne = new Promise((resolve, reject) => {
 setTimeout(resolve, 500, 'one')
})
const promiseTwo = new Promise((resolve, reject) => {
 setTimeout(resolve, 100, 'two')
})

Promise.race([promiseOne, promiseTwo]).then(result => {
 console.log(result) // 'two'
})

Common errors

Uncaught TypeError: undefined is not a promise

If you get the Uncaught TypeError: undefined is not a promise error in the console, make
sure you use new Promise() instead of just Promise()

32

Modules
ES Modules is the ECMAScript standard for working with modules.

While Node.js has been using the CommonJS standard for years, the browser never had a
module system, as every major decision such as a module system must be first
standardized by ECMAScript and then implemented by the browser.

This standardization process completed with ES2015 and browsers started implementing
this standard trying to keep everything well aligned, working all in the same way, and now
ES Modules are supported in Chrome, Safari, Edge and Firefox (since version 60).

Modules are very cool, because they let you encapsulate all sorts of functionality, and
expose this functionality to other JavaScript files, as libraries.

The ES Modules Syntax
The syntax to import a module is:

import package from 'module-name'

while CommonJS uses

const package = require('module-name')

A module is a JavaScript file that exports one or more values (objects, functions or
variables), using the export keyword. For example, this module exports a function that
returns a string uppercase:

uppercase.js

export default str => str.toUpperCase()

In this example, the module defines a single, default export, so it can be an anonymous
function. Otherwise it would need a name to distinguish it from other exports.

Now, any other JavaScript module can import the functionality offered by uppercase.js by
importing it.

An HTML page can add a module by using a <script> tag with the special type="module"
attribute:

33

<script type="module" src="index.js"></script>

Note: this module import behaves like a defer script load. See efficiently load
JavaScript with defer and async

It's important to note that any script loaded with type="module" is loaded in strict mode.

In this example, the uppercase.js module defines a default export, so when we import it,
we can assign it a name we prefer:

import toUpperCase from './uppercase.js'

and we can use it:

toUpperCase('test') //'TEST'

You can also use an absolute path for the module import, to reference modules defined on
another domain:

import toUpperCase from 'https://flavio-es-modules-example.glitch.me/uppercase.js'

This is also valid import syntax:

import { toUpperCase } from '/uppercase.js'
import { toUpperCase } from '../uppercase.js'

This is not:

import { toUpperCase } from 'uppercase.js'
import { toUpperCase } from 'utils/uppercase.js'

It's either absolute, or has a ./ or / before the name.

Other import/export options
We saw this example above:

export default str => str.toUpperCase()

https://flaviocopes.com/javascript-async-defer/

34

This creates one default export. In a file however you can export more than one thing, by
using this syntax:

const a = 1
const b = 2
const c = 3

export { a, b, c }

Another module can import all those exports using

import * from 'module'

You can import just a few of those exports, using the destructuring assignment:

import { a } from 'module'
import { a, b } from 'module'

You can rename any import, for convenience, using as :

import { a, b as two } from 'module'

You can import the default export, and any non-default export by name, like in this common
React import:

import React, { Component } from 'react'

You can see an ES Modules example here: https://glitch.com/edit/#!/flavio-es-modules-
example?path=index.html

CORS
Modules are fetched using CORS. This means that if you reference scripts from other
domains, they must have a valid CORS header that allows cross-site loading (like Access-
Control-Allow-Origin: *)

What about browsers that do not support
modules?

https://glitch.com/edit/#!/flavio-es-modules-example?path=index.html

35

Use a combination of type="module" and nomodule :

<script type="module" src="module.js"></script>
<script nomodule src="fallback.js"></script>

Conclusion
ES Modules are one of the biggest features introduced in modern browsers. They are part of
ES6 but the road to implement them has been long.

We can now use them! But we must also remember that having more than a few modules is
going to have a performance hit on our pages, as it's one more step that the browser must
perform at runtime.

Webpack is probably going to still be a huge player even if ES Modules land in the browser,
but having such a feature directly built in the language is huge for a unification of how
modules work client-side and on Node.js as well.

36

New String methods
Any string value got some new instance methods:

 repeat()

 codePointAt()

repeat()
Repeats the strings for the specificed number of times:

'Ho'.repeat(3) //'HoHoHo'

Returns an empty string if there is no parameter, or the parameter is 0 . If the parameter is
negative you'll get a RangeError.

codePointAt()
This method can be used to handle Unicode characters that cannot be represented by a
single 16-bit Unicode unit, but need 2 instead.

Using charCodeAt() you need to retrieve the first, and the second, and combine them.
Using codePointAt() you get the whole character in one call.

For example, this chinese character "𠮷" is composed by 2 UTF-16 (Unicode) parts:

"𠮷".charCodeAt(0).toString(16) //d842
"𠮷".charCodeAt(1).toString(16) //dfb7

If you create a new character by combining those unicode characters:

"\ud842\udfb7" //"𠮷"

You can get the same result usign codePointAt() :

"𠮷".codePointAt(0) //20bb7

If you create a new character by combining those unicode characters:

37

"\u{20bb7}" //"𠮷"

More on Unicode and working with it in my Unicode guide: https://flaviocopes.com/unicode/

https://flaviocopes.com/unicode/

38

New Object methods
ES6 introduced several static methods under the Object namespace:

 Object.is() determines if two values are the same value
 Object.assign() used to shallow copy an object
 Object.setPrototypeOf sets an object prototype

Object.is()
This methods aims to help comparing values.

Usage:

Object.is(a, b)

The result is always false unless:

 a and b are the same exact object
 a and b are equal strings (strings are equal when composed by the same
characters)
 a and b are equal numbers (numbers are equal when their value is equal)
 a and b are both undefined , both null , both NaN , both true or both false

 0 and -0 are different values in JavaScript, so pay attention in this special case (convert
all to +0 using the + unary operator before comparing, for example).

Object.assign()
Introduced in ES2015 , this method copies all the enumerable own properties of one or
more objects into another.

Its primary use case is to create a shallow copy of an object.

const copied = Object.assign({}, original)

Being a shallow copy, values are cloned, and objects references are copied (not the objects
themselves), so if you edit an object property in the original object, that's modified also in the
copied object, since the referenced inner object is the same:

39

const original = {
 name: 'Fiesta',
 car: {
 color: 'blue'
 }
}
const copied = Object.assign({}, original)

original.name = 'Focus'
original.car.color = 'yellow'

copied.name //Fiesta
copied.car.color //yellow

I mentioned "one or more":

const wisePerson = {
 isWise: true
}
const foolishPerson = {
 isFoolish: true
}
const wiseAndFoolishPerson = Object.assign({}, wisePerson, foolishPerson)

console.log(wiseAndFoolishPerson) //{ isWise: true, isFoolish: true }

Object.setPrototypeOf()
Set the prototype of an object. Accepts two arguments: the object and the prototype.

Usage:

Object.setPrototypeOf(object, prototype)

Example:

40

const animal = {
 isAnimal: true
}
const mammal = {
 isMammal: true
}

mammal.__proto__ = animal
mammal.isAnimal //true

const dog = Object.create(animal)

dog.isAnimal //true
console.log(dog.isMammal) //undefined

Object.setPrototypeOf(dog, mammal)

dog.isAnimal //true
dog.isMammal //true

41

The spread operator
You can expand an array, an object or a string using the spread operator

Let's start with an array example. Given

const a = [1, 2, 3]

you can create a new array using

const b = [...a, 4, 5, 6]

You can also create a copy of an array using

const c = [...a]

This works for objects as well. Clone an object with:

const newObj = { ...oldObj }

Using strings, the spread operator creates an array with each char in the string:

const hey = 'hey'
const arrayized = [...hey] // ['h', 'e', 'y']

This operator has some pretty useful applications. The most important one is the ability to
use an array as function argument in a very simple way:

const f = (foo, bar) => {}
const a = [1, 2]
f(...a)

(in the past you could do this using f.apply(null, a) but that's not as nice and readable)

The rest element is useful when working with array destructuring:

const numbers = [1, 2, 3, 4, 5]
[first, second, ...others] = numbers

and spread elements:

42

const numbers = [1, 2, 3, 4, 5]
const sum = (a, b, c, d, e) => a + b + c + d + e
const sum = sum(...numbers)

ES2018 introduces rest properties, which are the same but for objects.

Rest properties:

const { first, second, ...others } = {
 first: 1,
 second: 2,
 third: 3,
 fourth: 4,
 fifth: 5
}

first // 1
second // 2
others // { third: 3, fourth: 4, fifth: 5 }

Spread properties allow to create a new object by combining the properties of the object
passed after the spread operator:

const items = { first, second, ...others }
items //{ first: 1, second: 2, third: 3, fourth: 4, fifth: 5 }

43

Set
A Set data structure allows to add data to a container.

A Set is a collection of objects or primitive types (strings, numbers or booleans), and you can
think of it as a Map where values are used as map keys, with the map value always being a
boolean true.

Initialize a Set
A Set is initialized by calling:

const s = new Set()

Add items to a Set

You can add items to the Set by using the add method:

s.add('one')
s.add('two')

A set only stores unique elements, so calling s.add('one') multiple times won't add new
items.

You can't add multiple elements to a set at the same time. You need to call add() multiple
times.

Check if an item is in the set

Once an element is in the set, we can check if the set contains it:

s.has('one') //true
s.has('three') //false

Delete an item from a Set by key

Use the delete() method:

s.delete('one')

44

Determine the number of items in a Set

Use the size property:

s.size

Delete all items from a Set

Use the clear() method:

s.clear()

Iterate the items in a Set

Use the keys() or values() methods - they are equivalent:

for (const k of s.keys()) {
 console.log(k)
}

for (const k of s.values()) {
 console.log(k)
}

The entries() method returns an iterator, which you can use like this:

const i = s.entries()
console.log(i.next())

calling i.next() will return each element as a { value, done = false } object until the
iterator ends, at which point done is true .

You can also use the forEach() method on the set:

s.forEach(v => console.log(v))

or you can just use the set in a for..of loop:

for (const k of s) {
 console.log(k)
}

45

Initialize a Set with values
You can initialize a Set with a set of values:

const s = new Set([1, 2, 3, 4])

Convert to array

Convert the Set keys into an array

const a = [...s.keys()]

// or

const a = [...s.values()]

A WeakSet
A WeakSet is a special kind of Set.

In a Set, items are never garbage collected. A WeakSet instead lets all its items be freely
garbage collected. Every key of a WeakSet is an object. When the reference to this object is
lost, the value can be garbage collected.

Here are the main differences:

1. you cannot iterate over the WeakSet
2. you cannot clear all items from a WeakSet
3. you cannot check its size

A WeakSet is generally used by framework-level code, and only exposes these methods:

add()
has()
delete()

46

Map
A Map data structure allows to associate data to a key.

Before ES6
Before its introduction, people generally used objects as maps, by associating some object
or value to a specific key value:

const car = {}
car['color'] = 'red'
car.owner = 'Flavio'
console.log(car['color']) //red
console.log(car.color) //red
console.log(car.owner) //Flavio
console.log(car['owner']) //Flavio

Enter Map
ES6 introduced the Map data structure, providing us a proper tool to handle this kind of data
organization.

A Map is initialized by calling:

const m = new Map()

Add items to a Map

You can add items to the map by using the set method:

m.set('color', 'red')
m.set('age', 2)

Get an item from a map by key

And you can get items out of a map by using get :

const color = m.get('color')
const age = m.get('age')

47

Delete an item from a map by key

Use the delete() method:

m.delete('color')

Delete all items from a map

Use the clear() method:

m.clear()

Check if a map contains an item by key

Use the has() method:

const hasColor = m.has('color')

Find the number of items in a map

Use the size property:

const size = m.size

Initialize a map with values
You can initialize a map with a set of values:

const m = new Map([['color', 'red'], ['owner', 'Flavio'], ['age', 2]])

Map keys
Just like any value (object, array, string, number) can be used as the value of the key-value
entry of a map item, any value can be used as the key, even objects.

If you try to get a non-existing key using get() out of a map, it will return undefined .

48

Weird situations you'll almost never find in
real life

const m = new Map()
m.set(NaN, 'test')
m.get(NaN) //test

const m = new Map()
m.set(+0, 'test')
m.get(-0) //test

Iterating over a map

Iterate over map keys

Map offers the keys() method we can use to iterate on all the keys:

for (const k of m.keys()) {
 console.log(k)
}

Iterate over map values

The Map object offers the values() method we can use to iterate on all the values:

for (const v of m.values()) {
 console.log(v)
}

Iterate over map key, value pairs

The Map object offers the entries() method we can use to iterate on all the values:

for (const [k, v] of m.entries()) {
 console.log(k, v)
}

which can be simplified to

49

for (const [k, v] of m) {
 console.log(k, v)
}

Convert to array

Convert the map keys into an array

const a = [...m.keys()]

Convert the map values into an array

const a = [...m.values()]

WeakMap
A WeakMap is a special kind of map.

In a map object, items are never garbage collected. A WeakMap instead lets all its items be
freely garbage collected. Every key of a WeakMap is an object. When the reference to this
object is lost, the value can be garbage collected.

Here are the main differences:

1. you cannot iterate over the keys or values (or key-values) of a WeakMap
2. you cannot clear all items from a WeakMap
3. you cannot check its size

A WeakMap exposes those methods, which are equivalent to the Map ones:

 get(k)

 set(k, v)

 has(k)

 delete(k)

The use cases of a WeakMap are less evident than the ones of a Map, and you might never
find the need for them, but essentially it can be used to build a memory-sensitive cache that
is not going to interfere with garbage collection, or for careful encapsualtion and information
hiding.

50

Generators
Generators are a special kind of function with the ability to pause itself, and resume later,
allowing other code to run in the meantime.

See the full JavaScript Generators Guide for a detailed explanation of the topic.

The code decides that it has to wait, so it lets other code "in the queue" to run, and keeps
the right to resume its operations "when the thing it's waiting for" is done.

All this is done with a single, simple keyword: yield . When a generator contains that
keyword, the execution is halted.

A generator can contain many yield keywords, thus halting itself multiple times, and it's
identified by the *function keyword, which is not to be confused with the pointer
dereference operator used in lower level programming languages such as C, C++ or Go.

Generators enable whole new paradigms of programming in JavaScript, allowing:

2-way communication while a generator is running
long-lived while loops which do not freeze your program

Here is an example of a generator which explains how it all works.

function *calculator(input) {
 var doubleThat = 2 * (yield (input / 2))
 var another = yield (doubleThat)
 return (input * doubleThat * another)
}

We initialize it with

const calc = calculator(10)

Then we start the iterator on our generator:

calc.next()

This first iteration starts the iterator. The code returns this object:

{
 done: false
 value: 5
}

51

What happens is: the code runs the function, with input = 10 as it was passed in the
generator constructor. It runs until it reaches the yield , and returns the content of yield :
 input / 2 = 5 . So we got a value of 5, and the indication that the iteration is not done (the
function is just paused).

In the second iteration we pass the value 7 :

calc.next(7)

and what we got back is:

{
 done: false
 value: 14
}

 7 was placed as the value of doubleThat . Important: you might read like input / 2 was
the argument, but that's just the return value of the first iteration. We now skip that, and use
the new input value, 7 , and multiply it by 2.

We then reach the second yield, and that returns doubleThat , so the returned value is 14 .

In the next, and last, iteration, we pass in 100

calc.next(100)

and in return we got

{
 done: true
 value: 14000
}

As the iteration is done (no more yield keywords found) and we just return (input *

doubleThat * another) which amounts to 10 * 14 * 100 .

52

ES2016

53

Array.prototype.includes()
This feature introduces a more readable syntax for checking if an array contains an element.

With ES6 and lower, to check if an array contained an element you had to use indexOf ,
which checks the index in the array, and returns -1 if the element is not there.

Since -1 is evaluated as a true value, you could not do for example

if (![1,2].indexOf(3)) {
 console.log('Not found')
}

With this feature introduced in ES7 we can do

if (![1,2].includes(3)) {
 console.log('Not found')
}

54

Exponentiation Operator
The exponentiation operator ** is the equivalent of Math.pow() , but brought into the
language instead of being a library function.

Math.pow(4, 2) == 4 ** 2

This feature is a nice addition for math intensive JS applications.

The ** operator is standardized across many languages including Python, Ruby, MATLAB,
Lua, Perl and many others.

55

ES2017

56

String padding
The purpose of string padding is to add characters to a string, so it reaches a specific
length.

ES2017 introduces two String methods: padStart() and padEnd() .

padStart(targetLength [, padString])
padEnd(targetLength [, padString])

Sample usage:

padStart()

'test'.padStart(4) 'test'

'test'.padStart(5) ' test'

'test'.padStart(8) ' test'

'test'.padStart(8, 'abcd') 'abcdtest'

padEnd()

'test'.padEnd(4) 'test'

'test'.padEnd(5) 'test '

'test'.padEnd(8) 'test '

'test'.padEnd(8, 'abcd') 'testabcd'

57

Object.values()
This method returns an array containing all the object own property values.

Usage:

const person = { name: 'Fred', age: 87 }
Object.values(person) // ['Fred', 87]

 Object.values() also works with arrays:

const people = ['Fred', 'Tony']
Object.values(people) // ['Fred', 'Tony']

58

Object.entries()
This method returns an array containing all the object own properties, as an array of [key,
value] pairs.

Usage:

const person = { name: 'Fred', age: 87 }
Object.entries(person) // [['name', 'Fred'], ['age', 87]]

 Object.entries() also works with arrays:

const people = ['Fred', 'Tony']
Object.entries(people) // [['0', 'Fred'], ['1', 'Tony']]

59

Object.getOwnPropertyDescriptors()
This method returns all own (non-inherited) properties descriptors of an object.

Any object in JavaScript has a set of properties, and each of these properties has a
descriptor.

A descriptor is a set of attributes of a property, and it's composed by a subset of the
following:

value: the value of the property
writable: true the property can be changed
get: a getter function for the property, called when the property is read
set: a setter function for the property, called when the property is set to a value
configurable: if false, the property cannot be removed nor any attribute can be
changed, except its value
enumerable: true if the property is enumerable

 Object.getOwnPropertyDescriptors(obj) accepts an object, and returns an object with the set
of descriptors.

In what way is this useful?

ES6 gave us Object.assign() , which copies all enumerable own properties from one or
more objects, and return a new object.

However there is a problem with that, because it does not correctly copies properties with
non-default attributes.

If an object for example has just a setter, it's not correctly copied to a new object, using
 Object.assign() .

For example with

const person1 = {
 set name(newName) {
 console.log(newName)
 }
}

This won't work:

60

const person2 = {}
Object.assign(person2, person1)

But this will work:

const person3 = {}
Object.defineProperties(person3,
 Object.getOwnPropertyDescriptors(person1))

As you can see with a simple console test:

person1.name = 'x'
"x"

person2.name = 'x'

person3.name = 'x'
"x"

 person2 misses the setter, it was not copied over.

The same limitation goes for shallow cloning objects with Object.create().

61

Trailing commas
This feature allows to have trailing commas in function declarations, and in functions calls:

const doSomething = (var1, var2,) => {
 //...
}

doSomething('test2', 'test2',)

This change will encourage developers to stop the ugly "comma at the start of the line" habit.

62

Async functions
JavaScript evolved in a very short time from callbacks to promises (ES2015), and since
ES2017 asynchronous JavaScript is even simpler with the async/await syntax.

Async functions are a combination of promises and generators, and basically, they are a
higher level abstraction over promises. Let me repeat: async/await is built on promises.

Why were async/await introduced?
They reduce the boilerplate around promises, and the "don't break the chain" limitation of
chaining promises.

When Promises were introduced in ES2015, they were meant to solve a problem with
asynchronous code, and they did, but over the 2 years that separated ES2015 and ES2017,
it was clear that promises could not be the final solution.

Promises were introduced to solve the famous callback hell problem, but they introduced
complexity on their own, and syntax complexity.

They were good primitives around which a better syntax could be exposed to developers, so
when the time was right we got async functions.

They make the code look like it's synchronous, but it's asynchronous and non-blocking
behind the scenes.

How it works
An async function returns a promise, like in this example:

const doSomethingAsync = () => {
 return new Promise(resolve => {
 setTimeout(() => resolve('I did something'), 3000)
 })
}

When you want to call this function you prepend await , and the calling code will stop
until the promise is resolved or rejected. One caveat: the client function must be defined
as async . Here's an example:

63

const doSomething = async () => {
 console.log(await doSomethingAsync())
}

A quick example
This is a simple example of async/await used to run a function asynchronously:

const doSomethingAsync = () => {
 return new Promise(resolve => {
 setTimeout(() => resolve('I did something'), 3000)
 })
}

const doSomething = async () => {
 console.log(await doSomethingAsync())
}

console.log('Before')
doSomething()
console.log('After')

The above code will print the following to the browser console:

Before
After
I did something //after 3s

Promise all the things
Prepending the async keyword to any function means that the function will return a
promise.

Even if it's not doing so explicitly, it will internally make it return a promise.

This is why this code is valid:

const aFunction = async () => {
 return 'test'
}

aFunction().then(alert) // This will alert 'test'

and it's the same as:

64

const aFunction = async () => {
 return Promise.resolve('test')
}

aFunction().then(alert) // This will alert 'test'

The code is much simpler to read
As you can see in the example above, our code looks very simple. Compare it to code using
plain promises, with chaining and callback functions.

And this is a very simple example, the major benefits will arise when the code is much more
complex.

For example here's how you would get a JSON resource, and parse it, using promises:

const getFirstUserData = () => {
 return fetch('/users.json') // get users list
 .then(response => response.json()) // parse JSON
 .then(users => users[0]) // pick first user
 .then(user => fetch(`/users/${user.name}`)) // get user data
 .then(userResponse => response.json()) // parse JSON
}

getFirstUserData()

And here is the same functionality provided using await/async:

const getFirstUserData = async () => {
 const response = await fetch('/users.json') // get users list
 const users = await response.json() // parse JSON
 const user = users[0] // pick first user
 const userResponse = await fetch(`/users/${user.name}`) // get user data
 const userData = await user.json() // parse JSON
 return userData
}

getFirstUserData()

Multiple async functions in series
Async functions can be chained very easily, and the syntax is much more readable than with
plain promises:

65

const promiseToDoSomething = () => {
 return new Promise(resolve => {
 setTimeout(() => resolve('I did something'), 10000)
 })
}

const watchOverSomeoneDoingSomething = async () => {
 const something = await promiseToDoSomething()
 return something + ' and I watched'
}

const watchOverSomeoneWatchingSomeoneDoingSomething = async () => {
 const something = await watchOverSomeoneDoingSomething()
 return something + ' and I watched as well'
}

watchOverSomeoneWatchingSomeoneDoingSomething().then(res => {
 console.log(res)
})

Will print:

I did something and I watched and I watched as well

Easier debugging
Debugging promises is hard because the debugger will not step over asynchronous code.

Async/await makes this very easy because to the compiler it's just like synchronous code.

66

Shared Memory and Atomics
WebWorkers are used to create multithreaded programs in the browser.

They offer a messaging protocol via events. Since ES2017, you can create a shared
memory array between web workers and their creator, using a SharedArrayBuffer .

Since it's unknown how much time writing to a shared memory portion takes to propagate,
Atomics are a way to enforce that when reading a value, any kind of writing operation is
completed.

Any more detail on this can be found in the spec proposal, which has since been
implemented.

https://github.com/tc39/ecmascript_sharedmem/blob/master/TUTORIAL.md

67

ES2018

68

Rest/Spread Properties
ES2015 introduced the concept of a rest element when working with array destructuring:

const numbers = [1, 2, 3, 4, 5]
[first, second, ...others] = numbers

and spread elements:

const numbers = [1, 2, 3, 4, 5]
const sum = (a, b, c, d, e) => a + b + c + d + e
const sum = sum(...numbers)

ES2018 introduces the same but for objects.

Rest properties:

Spread properties allow to create a new object by combining the properties of the object
passed after the spread operator:

const items = { first, second, ...others }
items //{ first: 1, second: 2, third: 3, fourth: 4, fifth: 5 }

const { first, second, ...others } = { first: 1, second: 2, third: 3, fourth: 4, fifth: 5

first // 1
second // 2
others // { third: 3, fourth: 4, fifth: 5 }

69

Asynchronous iteration
The new construct for-await-of allows you to use an async iterable object as the loop
iteration:

for await (const line of readLines(filePath)) {
 console.log(line)
}

Since this uses await , you can use it only inside async functions, like a normal await .

70

Promise.prototype.finally()
When a promise is fulfilled, successfully it calls the then() methods, one after another.

If something fails during this, the then() methods are jumped and the catch() method is
executed.

 finally() allow you to run some code regardless of the successful or not successful
execution of the promise:

fetch('file.json')
 .then(data => data.json())
 .catch(error => console.error(error))
 .finally(() => console.log('finished'))

71

Regular Expression improvements
ES2018 introduced a number of improvements regarding Regular Expressions. I
recommend my tutorial on them, available at https://flaviocopes.com/javascript-regular-
expressions/.

Here are the ES2018 specific additions.

RegExp lookbehind assertions: match a string depending on
what precedes it

This is a lookahead: you use ?= to match a string that's followed by a specific substring:

 ?! performs the inverse operation, matching if a string is not followed by a specific
substring:

/Roger(?!Waters)/

/Roger(?! Waters)/.test('Roger is my dog') //true
/Roger(?! Waters)/.test('Roger Waters is a famous musician') //false

Lookaheads use the ?= symbol. They were already available.

Lookbehinds, a new feature, uses ?<= .

A lookbehind is negated using ?<! :

/Roger(?=Waters)/

/Roger(?= Waters)/.test('Roger is my dog') //false
/Roger(?= Waters)/.test('Roger is my dog and Roger Waters is a famous musician') //true

/(?<=Roger) Waters/

/(?<=Roger) Waters/.test('Pink Waters is my dog') //false
/(?<=Roger) Waters/.test('Roger is my dog and Roger Waters is a famous musician') //true

/(?<!Roger) Waters/

/(?<!Roger) Waters/.test('Pink Waters is my dog') //true
/(?<!Roger) Waters/.test('Roger is my dog and Roger Waters is a famous musician') //false

https://flaviocopes.com/javascript-regular-expressions/

72

Unicode property escapes \p{…} and \P{…}

In a regular expression pattern you can use \d to match any digit, \s to match any
character that's not a white space, \w to match any alphanumeric character, and so on.

This new feature extends this concept to all Unicode characters introducing \p{} and is
negation \P{} .

Any unicode character has a set of properties. For example Script determines the
language family, ASCII is a boolean that's true for ASCII characters, and so on. You can
put this property in the graph parentheses, and the regex will check for that to be true:

/^\p{ASCII}+$/u.test('abc') //✅
/^\p{ASCII}+$/u.test('ABC@') //✅
/^\p{ASCII}+$/u.test('ABC🙃 ') //❌

 ASCII_Hex_Digit is another boolean property, that checks if the string only contains valid
hexadecimal digits:

/^\p{ASCII_Hex_Digit}+$/u.test('0123456789ABCDEF') //✅
/^\p{ASCII_Hex_Digit}+$/u.test('h') //❌

There are many other boolean properties, which you just check by adding their name in the
graph parentheses, including Uppercase , Lowercase , White_Space , Alphabetic , Emoji
and more:

/^\p{Lowercase}$/u.test('h') //✅
/^\p{Uppercase}$/u.test('H') //✅

/^\p{Emoji}+$/u.test('H') //❌
/^\p{Emoji}+$/u.test('🙃🙃 ') //✅

In addition to those binary properties, you can check any of the unicode character properties
to match a specific value. In this example, I check if the string is written in the greek or latin
alphabet:

/^\p{Script=Greek}+$/u.test('ελληνικά') //✅
/^\p{Script=Latin}+$/u.test('hey') //✅

Read more about all the properties you can use directly on the proposal.

Named capturing groups

https://github.com/tc39/proposal-regexp-unicode-property-escapes

73

In ES2018 a capturing group can be assigned to a name, rather than just being assigned a
slot in the result array:

const re = /(?<year>\d{4})-(?<month>\d{2})-(?<day>\d{2})/
const result = re.exec('2015-01-02')

// result.groups.year === '2015';
// result.groups.month === '01';
// result.groups.day === '02';

The s flag for regular expressions

The s flag, short for single line, causes the . to match new line characters as well.
Without it, the dot matches regular characters but not the new line:

/hi.welcome/.test('hi\nwelcome') // false
/hi.welcome/s.test('hi\nwelcome') // true

74

ESNext
What's next? ESNext.

ESNext is a name that always indicates the next version of JavaScript.

The current ECMAScript version is ES2018. It was released in June 2018.

Historically JavaScript editions have been standardized during the summer, so we can
expect ECMAScript 2019 to be released in summer 2019.

So at the time of writing, ES2018 has been released, and ESNext is ES2019

Proposals to the ECMAScript standard are organized in stages. Stages 1-3 are an incubator
of new features, and features reaching Stage 4 are finalized as part of the new standard.

At the time of writing we have a number of features at Stage 4. I will introduce them in this
section. The latest versions of the major browsers should already implement most of those.

Some of those changes are mostly for internal use, but it's also good to know what is going
on.

There are other features at Stage 3, which might be promoted to Stage 4 in the next few
months, and you can check them out on this GitHub repository:
https://github.com/tc39/proposals.

https://github.com/tc39/proposals

75

Array.prototype.{flat,flatMap}
 flat() is a new array instance method that can create a one-dimensional array from a
multidimensional array.

Example:

['Dog', ['Sheep', 'Wolf']].flat()
//['Dog', 'Sheep', 'Wolf']

By default it only "flats" up to one level, but you can add a parameter to set the number of
levels you want to flat the array to. Set it to Infinity to have unlimited levels:

['Dog', ['Sheep', ['Wolf']]].flat()
//['Dog', 'Sheep', ['Wolf']]

['Dog', ['Sheep', ['Wolf']]].flat(2)
//['Dog', 'Sheep', 'Wolf']

['Dog', ['Sheep', ['Wolf']]].flat(Infinity)
//['Dog', 'Sheep', 'Wolf']

If you are familiar with the JavaScript map() method of an array, you know that using it you
can execute a function on every element of an array.

 flatMap() is a new Array instance method that combines flat() with map() . It's useful
when calling a function that returns an array in the map() callback, but you want your
resulted array to be flat:

['My dog', 'is awesome'].map(words => words.split(' '))
//[['My', 'dog'], ['is', 'awesome']]

['My dog', 'is awesome'].flatMap(words => words.split(' '))
//['My', 'dog', 'is', 'awesome']

76

Optional catch binding
Sometimes we dont need to have a parameter binded to the catch block of a try/catch.

We previously had to do:

try {
 //...
} catch (e) {
 //handle error
}

Even if we never had to use e to analyze the error. We can now simply omit it:

try {
 //...
} catch {
 //handle error
}

77

Object.fromEntries()
Objects have an entries() method, since ES2017.

It returns an array containing all the object own properties, as an array of [key, value]
pairs:

const person = { name: 'Fred', age: 87 }
Object.entries(person) // [['name', 'Fred'], ['age', 87]]

ES2019 introduces a new Object.fromEntries() method, which can create a new object
from such array of properties:

const person = { name: 'Fred', age: 87 }
const entries = Object.entries(person)
const newPerson = Object.fromEntries(entries)

person !== newPerson //true

78

String.prototype.{trimStart,trimEnd}
This feature has been part of v8/Chrome for almost a year now, and it's going to be
standardized in ES2019.

 trimStart()

Return a new string with removed white space from the start of the original string

'Testing'.trimStart() //'Testing'
' Testing'.trimStart() //'Testing'
' Testing '.trimStart() //'Testing '
'Testing'.trimStart() //'Testing'

 trimEnd()

Return a new string with removed white space from the end of the original string

'Testing'.trimEnd() //'Testing'
' Testing'.trimEnd() //' Testing'
' Testing '.trimEnd() //' Testing'
'Testing '.trimEnd() //'Testing'

79

Symbol.prototype.description
You can now retrieve the description of a symbol by accessing its description property
instead of having to use the toString() method:

const testSymbol = Symbol('Test')
testSymbol.description // 'Test'

80

JSON improvements
Before this change, the line separator (\u2028) and paragraph separator (\u2029) symbols
were not allowed in strings parsed as JSON.

Using JSON.parse(), those characters resulted in a SyntaxError but now they parse
correctly, as defined by the JSON standard.

81

Well-formed JSON.stringify()
Fixes the JSON.stringify() output when it processes surrogate UTF-8 code points
(U+D800 to U+DFFF).

Before this change calling JSON.stringify() would return a malformed Unicode character
(a "�").

Now those surrogate code points can be safely represented as strings using
 JSON.stringify() , and transformed back into their original representation using
 JSON.parse() .

82

Function.prototype.toString()
Functions have always had an instance method called toString() which return a string
containing the function code.

ES2019 introduced a change to the return value to avoid stripping comments and other
characters like whitespace, exactly representing the function as it was defined.

If previously we had

function /* this is bar */ bar () {}

The behavior was this:

bar.toString() //'function bar() {}

now the new behavior is:

bar.toString(); // 'function /* this is bar */ bar () {}'

	Preface
	ES2015
	let and const
	Arrow Functions
	Classes
	Default parameters
	Template Literals
	Destructuring assignments
	Enhanced Object Literals
	For-of loop
	Promises
	Modules
	New String methods
	New Object methods
	The spread operator
	Set
	Map
	Generators

	ES2016
	Array.prototype.includes()
	Exponentiation Operator

	ES2017
	String padding
	Object.values()
	Object.entries()
	Object.getOwnPropertyDescriptors()
	Trailing commas
	Async functions
	Shared Memory and Atomics

	ES2018
	Rest/Spread Properties
	Asynchronous iteration
	Promise.prototype.finally()
	Regular Expression improvements

	ESNext
	Array.prototype.{flat,flatMap}
	Optional catch binding
	Object.fromEntries()
	String.prototype.{trimStart,trimEnd}
	Symbol.prototype.description
	JSON improvements
	Well-formed JSON.stringify()
	Function.prototype.toString()

