

1

Table of Contents
The Express Handbook

Express overview

Request parameters

Sending a response

Sending a JSON response

Manage Cookies

Work with HTTP headers

Redirects

Routing

CORS

Templating

Middleware

Serving static files

Send files

Sessions

Validating input

Sanitizing input

Handling forms

File uploads in forms

An Express HTTPS server with a self-signed certificate

Setup Let's Encrypt for Express

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/C/calibre_5.40.0_tmp__n3l98gh/ii4bbmz4_pdf_out/content/express/express-for-book/index.html

2

The Express Handbook
The Express Handbook follows the 80/20 rule: learn in 20% of the time the 80% of a topic.

I find this approach gives a well-rounded overview. This book does not try to cover
everything under the sun related to Express. If you think some specific topic should be
included, tell me.

You can reach me on Twitter @flaviocopes.

I hope the contents of this book will help you achieve what you want: learn the basics
Express.

This book is written by Flavio. I publish web development tutorials every day on my
website flaviocopes.com.

Enjoy!

https://twitter.com/flaviocopes
https://flaviocopes.com/

3

Request parameters
A handy reference to all the request object properties and how to use them

Request parameters
I mentioned how the Request object holds all the HTTP request information.

These are the main properties you'll likely use:

Property Description

.app holds a reference to the Express app object

.baseUrl the base path on which the app responds

.body contains the data submitted in the request body (must be parsed
and populated manually before you can access it)

.cookies contains the cookies sent by the request (needs the cookie-parser
middleware)

.hostname the hostname as defined in the Host HTTP header value

.ip the client IP

.method the HTTP method used

.params the route named parameters

.path the URL path

.protocol the request protocol

.query an object containing all the query strings used in the request

.secure true if the request is secure (uses HTTPS)

.signedCookies contains the signed cookies sent by the request (needs the cookie-
parser middleware)

.xhr true if the request is an XMLHttpRequest

How to retrieve the GET query string
parameters using Express
The query string is the part that comes after the URL path, and starts with a question mark
 ? .

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Host
https://flaviocopes.com/xhr/

4

Example:

?name=flavio

Multiple query parameters can be added using & :

?name=flavio&age=35

How do you get those query string values in Express?

Express makes it very easy by populating the Request.query object for us:

const express = require('express')
const app = express()

app.get('/', (req, res) => {
 console.log(req.query)
})

app.listen(8080)

This object is filled with a property for each query parameter.

If there are no query params, it's an empty object.

This makes it easy to iterate on it using the for...in loop:

for (const key in req.query) {
 console.log(key, req.query[key])
}

This will print the query property key and the value.

You can access single properties as well:

req.query.name //flavio
req.query.age //35

How to retrieve the POST query string
parameters using Express
POST query parameters are sent by HTTP clients for example by forms, or when performing
a POST request sending data.

5

How can you access this data?

If the data was sent as JSON, using Content-Type: application/json , you will use the
 express.json() middleware:

const express = require('express')
const app = express()

app.use(express.json())

If the data was sent using Content-Type: application/x-www-form-urlencoded , you will need
to use the express.urlencoded() middleware:

const express = require('express')
const app = express()

app.use(express.urlencoded({
 extended: true
}))

In both cases you can access the data by referencing it from Request.body :

app.post('/form', (req, res) => {
 const name = req.body.name
})

Note: older Express versions required the use of the body-parser module to process
POST data. This is no longer the case as of Express 4.16 (released in September
2017) and later versions.

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/json

6

Sending a response
How to send a response back to the client using Express

In the Hello World example we used the Response.send() method to send a simple string as
a response, and to close the connection:

(req, res) => res.send('Hello World!')

If you pass in a string, it sets the Content-Type header to text/html .

if you pass in an object or an array, it sets the application/json Content-Type header, and
parses that parameter into JSON.

 send() automatically sets the Content-Length HTTP response header.

 send() also automatically closes the connection.

Use end() to send an empty response

An alternative way to send the response, without any body, it's by using the Response.end()
method:

res.end()

Set the HTTP response status

Use the Response.status() :

res.status(404).end()

or

res.status(404).send('File not found')

 sendStatus() is a shortcut:

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/json

7

res.sendStatus(200)
// === res.status(200).send('OK')

res.sendStatus(403)
// === res.status(403).send('Forbidden')

res.sendStatus(404)
// === res.status(404).send('Not Found')

res.sendStatus(500)
// === res.status(500).send('Internal Server Error')

8

Sending a JSON response
How to serve JSON data using the Node.js Express library

When you listen for connections on a route in Express, the callback function will be invoked
on every network call with a Request object instance and a Response object instance.

Example:

app.get('/', (req, res) => res.send('Hello World!'))

Here we used the Response.send() method, which accepts any string.

You can send JSON to the client by using Response.json() , a useful method.

It accepts an object or array, and converts it to JSON before sending it:

res.json({ username: 'Flavio' })

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/json

9

Manage Cookies
How to use the `Response.cookie()` method to manipulate your cookies

Use the Response.cookie() method to manipulate your cookies.

Examples:

res.cookie('username', 'Flavio')

This method accepts a third parameter, which contains various options:

The most useful parameters you can set are:

Value Description

 domain The cookie domain name

 expires Set the cookie expiration date. If missing, or 0, the cookie is a session
cookie

 httpOnly Set the cookie to be accessible only by the web server. See HttpOnly

 maxAge Set the expiry time relative to the current time, expressed in milliseconds

 path The cookie path. Defaults to '/'

 secure Marks the cookie HTTPS only

 signed Set the cookie to be signed

 sameSite Value of SameSite

A cookie can be cleared with:

res.clearCookie('username')

res.cookie('username', 'Flavio', { domain: '.flaviocopes.com', path: '/administrator', se

res.cookie('username', 'Flavio', { expires: new Date(Date.now() + 900000), httpOnly: true

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#set-a-cookie-domain
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#set-a-cookie-expiration-date
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#httponly
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#set-a-cookie-path
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#secure
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#samesite

10

Work with HTTP headers
Learn how to access and change HTTP headers using Express

Access HTTP headers values from a request
You can access all the HTTP headers using the Request.headers property:

app.get('/', (req, res) => {
 console.log(req.headers)
})

Use the Request.header() method to access one individual request header's value:

app.get('/', (req, res) => {
 req.header('User-Agent')
})

Change any HTTP header value for a response
You can change any HTTP header value using Response.set() :

res.set('Content-Type', 'text/html')

There is a shortcut for the Content-Type header, however:

res.type('.html')
// => 'text/html'

res.type('html')
// => 'text/html'

res.type('json')
// => 'application/json'

res.type('application/json')
// => 'application/json'

res.type('png')
// => image/png:

11

Redirects
How to redirect to other pages server-side

Redirects are common in Web Development. You can create a redirect using the
 Response.redirect() method:

res.redirect('/go-there')

This creates a 302 redirect.

A 301 redirect is made in this way:

res.redirect(301, '/go-there')

You can specify an absolute path (/go-there), an absolute url (https://anothersite.com),
a relative path (go-there) or use the .. to go back one level:

res.redirect('../go-there')
res.redirect('..')

You can also redirect back to the Referer HTTP header value (defaulting to / if not set)
using

res.redirect('back')

12

Routing
Routing is the process of determining what should happen when a URL is
called, or also which parts of the application should handle a specific
incoming request.

Routing is the process of determining what should happen when a URL is called, or also
which parts of the application should handle a specific incoming request.

In the Hello World example we used this code

app.get('/', (req, res) => { /* */ })

This creates a route that maps accessing the root domain URL / using the HTTP GET
method to the response we want to provide.

Named parameters

What if we want to listen for custom requests, maybe we want to create a service that
accepts a string, and returns that uppercase, and we don't want the parameter to be sent as
a query string, but part of the URL. We use named parameters:

If we send a request to /uppercase/test , we'll get TEST in the body of the response.

You can use multiple named parameters in the same URL, and they will all be stored in
 req.params .

Use a regular expression to match a path

You can use regular expressions to match multiple paths with one statement:

app.get(/post/, (req, res) => { /* */ })

will match /post , /post/first , /thepost , /posting/something , and so on.

app.get('/uppercase/:theValue', (req, res) => res.send(req.params.theValue.toUpperCase())

https://flaviocopes.com/javascript-regular-expressions/

13

CORS
How to allow cross site requests by setting up CORS

A JavaScript application running in the browser can usually only access HTTP resources
from the same domain (origin) that serves them.

Loading images or scripts/styles from the same origin always works. Also, loading Web
Fonts using @font-face have the 'same-origin' policy set by default. Likewise with other,
less popular things (like WebGL textures and drawImage resources loaded in the Canvas
API).

However, XHR and Fetch calls to an external, 3rd party server will fail. That is unless the 3rd
party server implements a mechanism which allows the connection to be made and
requested resources to be downloaded and used.

This mechanism is called CORS, Cross-Origin Resource Sharing.

One very important thing that needs CORS is ES Modules, recently introduced in modern
browsers.

If you don't set up a CORS policy on the server that allows it to serve 3rd party origins, the
request will fail.

Fetch example:

Fetch failed because of CORS policy

XHR example:

XHR request failed because of CORS policy

A Cross-Origin resource fails if it's:

to a different domain
to a different subdomain
to a different port
to a different protocol

CORS is there for your security, to prevent malicious users from exploiting whatever Web
Platform you happen to be using.

If you control both the server and the client, you know that both parties are trustworthy, and
therefore have good reason to allow resource sharing.

How?

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cors
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/es-modules

14

It depends on your server-side stack.

Browser support
Pretty good (basically all except IE<10):

CORS browser support

Example with Express
If you are using Node.js and Express as a framework, use the CORS middleware package.

Here's a simple implementation of an Express Node.js server:

const express = require('express')
const app = express()

app.get('/without-cors', (req, res, next) => {
 res.json({ msg: '😞 no CORS, no party!' })
})

const server = app.listen(3000, () => {
 console.log('Listening on port %s', server.address().port)
})

If you hit /without-cors with a fetch request from a different origin, it's going to raise the
CORS issue.

All you need to do to make things work smoothly, is to require the cors package linked
above, and pass it in as a middleware function to an endpoint request handler:

const express = require('express')
const cors = require('cors')
const app = express()

app.get('/with-cors', cors(), (req, res, next) => {
 res.json({ msg: 'WHOAH with CORS it works! 🔝 🎉 ' })
})

/* the rest of the app */

I made a simple Glitch example, here's its code: https://glitch.com/edit/#!/flavio-cors-client.

This is the Node.js Express server: https://glitch.com/edit/#!/flaviocopes-cors-example-
express

https://github.com/expressjs/cors
https://glitch.com/edit/#!/flavio-cors-client
https://glitch.com/edit/#!/flaviocopes-cors-example-express

15

Note how the request that fails because the server does not handle the CORS headers
correctly, is still received. As you can see in the Network panel, where you can see a
message the server sent:

No response from CORS

Allow only specific origins
This example has a problem however: ANY request will be accepted by the server as cross-
origin.

As you can see in the Network panel, the request that passed has a response header
 access-control-allow-origin: * :

The CORS response header

You need to configure the server to only allow one origin to serve, and block all the others.

Using the same cors Node library, here's how you would do it:

const cors = require('cors')

const corsOptions = {
 origin: 'https://yourdomain.com',
}

app.get('/products/:id', cors(corsOptions), (req, res, next) => {
 //...
})

You can serve more as well:

const whitelist = ['http://example1.com', 'http://example2.com']
const corsOptions = {
 origin: function (origin, callback) {
 if (whitelist.indexOf(origin) !== -1) {
 callback(null, true)
 } else {
 callback(new Error('Not allowed by CORS'))
 }
 },
}

Preflight

16

There are some requests that are handled in a "simple" way. All GET requests belong to this
group.

Also some POST and HEAD requests do as well.

 POST requests are also in this group, if they satisfy the requirement of using a Content-Type
of

 application/x-www-form-urlencoded

 multipart/form-data

 text/plain

All other requests must run through a pre-approval phase, called preflight. The browser does
this to determine if it has the permission to perform an action, by issuing an OPTIONS
request.

A preflight request contains a few headers that the server will use to check permissions
(irrelevant fields omitted):

OPTIONS /the/resource/you/request
Access-Control-Request-Method: POST
Access-Control-Request-Headers: origin, x-requested-with, accept
Origin: https://your-origin.com

The server will respond with something like this (irrelevant fields omitted):

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://your-origin.com
Access-Control-Allow-Methods: POST, GET, OPTIONS, DELETE

We checked for POST, but the server tells us we can also issue other HTTP request types
for that particular resource.

Following the Node.js Express example above, the server must also handle the OPTIONS
request:

var express = require('express')
var cors = require('cors')
var app = express()

//allow OPTIONS on just one resource
app.options('/the/resource/you/request', cors())

//allow OPTIONS on all resources
app.options('*', cors())

17

Templating
Express is capable of handling server-side template engines. Template
engines allow us to add data to a view, and generate HTML dynamically.

Express is capable of handling server-side template engines.

Template engines allow us to add data to a view, and generate HTML dynamically.

Express uses Jade as the default. Jade is the old version of Pug, specifically Pug 1.0.

The name was changed from Jade to Pug due to a trademark issue in 2016, when the
project released version 2. You can still use Jade, aka Pug 1.0, but going forward, it's
best to use Pug 2.0

Although the last version of Jade is 3 years old (at the time of writing, summer 2018), it's still
the default in Express for backward compatibility reasons.

In any new project, you should use Pug or another engine of your choice. The official site of
Pug is https://pugjs.org/.

You can use many different template engines, including Pug, Handlebars, Mustache, EJS
and more.

Using Pug
To use Pug we must first install it:

npm install pug

and when initializing the Express app, we need to set it:

const express = require('express')
const app = express()
app.set('view engine', 'pug')

We can now start writing our templates in .pug files.

Create an about view:

app.get('/about', (req, res) => {
 res.render('about')
})

https://pugjs.org/

18

and the template in views/about.pug :

p Hello from Flavio

This template will create a p tag with the content Hello from Flavio .

You can interpolate a variable using

app.get('/about', (req, res) => {
 res.render('about', { name: 'Flavio' })
})

p Hello from #{name}

This is a very short introduction to Pug, in the context of using it with Express. Look at the
Pug guide for more information on how to use Pug.

If you are used to template engines that use HTML and interpolate variables, like
Handlebars (described next), you might run into issues, especially when you need to convert
existing HTML to Pug. This online converter from HTML to Jade (which is very similar, but a
little different than Pug) will be a great help: https://jsonformatter.org/html-to-jade

Also see the differences between Jade and Pug

Using Handlebars
Let's try and use Handlebars instead of Pug.

You can install it using npm install hbs .

Put an about.hbs template file in the views/ folder:

Hello from {{name}}

and then use this Express configuration to serve it on /about :

https://flaviocopes.com/pug
https://jsonformatter.org/html-to-jade
https://pugjs.org/api/migration-v2.html

19

const express = require('express')
const app = express()
const hbs = require('hbs')

app.set('view engine', 'hbs')
app.set('views', path.join(__dirname, 'views'))

app.get('/about', (req, res) => {
 res.render('about', { name: 'Flavio' })
})

app.listen(3000, () => console.log('Server ready'))

You can also render a React application server-side, using the express-react-views
package.

Start with npm install express-react-views react react-dom .

Now instead of requiring hbs we require express-react-views and use that as the engine,
using jsx files:

const express = require('express')
const app = express()

app.set('view engine', 'jsx')
app.engine('jsx', require('express-react-views').createEngine())

app.get('/about', (req, res) => {
 res.render('about', { name: 'Flavio' })
})

app.listen(3000, () => console.log('Server ready'))

Just put an about.jsx file in views/ , and calling /about should present you an "Hello
from Flavio" string:

const React = require('react')

class HelloMessage extends React.Component {
 render() {
 return <div>Hello from {this.props.name}</div>
 }
}

module.exports = HelloMessage

https://github.com/reactjs/express-react-views

20

Middleware
A piece of middleware is a function that hooks into the routing process,
performing an arbitrary operation at some point in the chain (depending on
what we want it to do).

A piece of middleware is a function that hooks into the routing process, performing an
arbitrary operation at some point in the chain (depending on what we want it to do).

It's commonly used to edit the request or response objects, or terminate the request before it
reaches the route handler code.

Middleware is added to the execution stack like so:

app.use((req, res, next) => { /* */ })

This is similar to defining a route, but in addition to the Request and Response objects
instances, we also have a reference to the next middleware function, which we assign to the
variable next .

We always call next() at the end of our middleware function, in order to pass the execution
to the next handler. That is unless we want to prematurely end the response and send it
back to the client.

You typically use pre-made middleware, in the form of npm packages. A big list of the
available ones can be found here.

One example is cookie-parser , which is used to parse cookies into the req.cookies
object. You can install it using npm install cookie-parser and you use it thusly:

const express = require('express')
const app = express()
const cookieParser = require('cookie-parser')

app.get('/', (req, res) => res.send('Hello World!'))

app.use(cookieParser())
app.listen(3000, () => console.log('Server ready'))

We can also set a middleware function to run for specific routes only (not for all), by using it
as the second parameter of the route definition:

https://expressjs.com/en/resources/middleware.html

21

const myMiddleware = (req, res, next) => {
 /* ... */
 next()
}

app.get('/', myMiddleware, (req, res) => res.send('Hello World!'))

If you need to store data that's generated in a middleware to pass it down to subsequent
middleware functions, or to the request handler, you can use the Request.locals object. It
will attach that data to the current request:

req.locals.name = 'Flavio'

22

Serving static files
How to serve static assets directly from a folder in Express

It's common to have images, CSS and more in a public subfolder, and expose them to the
root level:

const express = require('express')
const app = express()

app.use(express.static('public'))

/* ... */

app.listen(3000, () => console.log('Server ready'))

If you have an index.html file in public/ , that will be served if you now hit the root domain
URL (http://localhost:3000)

23

Send files
Express provides a handy method to transfer a file as attachment:
`Response.download()`

Express provides a handy method to transfer a file as attachment: Response.download() .

Once a user hits a route that sends a file using this method, browsers will prompt the user
for download.

The Response.download() method allows you to send a file attached to the request, and the
browser instead of showing it in the page, it will save it to disk.

app.get('/', (req, res) => res.download('./file.pdf'))

In the context of an app:

const express = require('express')
const app = express()

app.get('/', (req, res) => res.download('./file.pdf'))
app.listen(3000, () => console.log('Server ready'))

You can set the file to be sent with a custom filename:

res.download('./file.pdf', 'user-facing-filename.pdf')

This method provides a callback function which you can use to execute code once the file
has been sent:

res.download('./file.pdf', 'user-facing-filename.pdf', (err) => {
 if (err) {
 //handle error
 return
 } else {
 //do something
 }
})

24

Sessions
How to use sessions to identify users across requests

By default Express requests are sequential and no request can be linked to each other.
There is no way to know if this request comes from a client that already performed a request
previously.

Users cannot be identified unless using some kind of mechanism that makes it possible.

That's what sessions are.

When implemented, every user of your API or website will be assigned a unique session,
and this allows you to store the user state.

We'll use the express-session module, which is maintained by the Express team.

You can install it using

npm install express-session

and once you're done, you can instantiate it in your application with

const session = require('express-session')

This is a middleware, so you install it in Express using

const express = require('express')
const session = require('express-session')

const app = express()
app.use(session({
 'secret': '343ji43j4n3jn4jk3n'
}))

After this is done, all the requests to the app routes are now using sessions.

 secret is the only required parameter, but there are many more you can use. It should be a
randomly unique string for your application.

The session is attached to the request, so you can access it using req.session here:

25

app.get('/', (req, res, next) => {
 // req.session
}

This object can be used to get data out of the session, and also to set data:

req.session.name = 'Flavio'
console.log(req.session.name) // 'Flavio'

This data is serialized as JSON when stored, so you are safe to use nested objects.

You can use sessions to communicate data to middleware that's executed later, or to
retrieve it later on, on subsequent requests.

Where is the session data stored? It depends on how you set up the express-session
module.

It can store session data in

memory, not meant for production
a database like MySQL or Mongo
a memory cache like Redis or Memcached

There is a big list of 3rd packages that implement a wide variety of different compatible
caching stores in https://github.com/expressjs/session

All solutions store the session id in a cookie, and keep the data server-side. The client will
receive the session id in a cookie, and will send it along with every HTTP request.

We'll reference that server-side to associate the session id with the data stored locally.

Memory is the default, it requires no special setup on your part, it's the simplest thing but it's
meant only for development purposes.

The best choice is a memory cache like Redis, for which you need to setup its own
infrastructure.

Another popular package to manage sessions in Express is cookie-session , which has a
big difference: it stores data client-side in the cookie. I do not recommend doing that
because storing data in cookies means that it's stored client-side, and sent back and forth in
every single request made by the user. It's also limited in size, as it can only store 4
kilobytes of data. Cookies also need to be secured, but by default they are not, since secure
Cookies are possible on HTTPS sites and you need to configure them if you have proxies.

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/json
https://github.com/expressjs/session

26

Validating input
Learn how to validate any data coming in as input in your Express
endpoints

Say you have a POST endpoint that accepts the name, email and age parameters:

const express = require('express')
const app = express()

app.use(express.json())

app.post('/form', (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

How do you perform server-side validation on those results to make sure:

name is a string of at least 3 characters?
email is a real email?
age is a number, between 0 and 110?

The best way to handle validation on any kind of input coming from outside in Express is by
using the express-validator package:

npm install express-validator

You require the check and validationResult objects from the package:

const { check, validationResult } = require('express-validator');

We pass an array of check() calls as the second argument of the post() call. Every
 check() call accepts the parameter name as argument. Then we call validationResult()
to verify there were no validation errors. If there are any, we tell them to the client:

https://express-validator.github.io/

27

app.post('/form', [
 check('name').isLength({ min: 3 }),
 check('email').isEmail(),
 check('age').isNumeric()
], (req, res) => {
 const errors = validationResult(req)
 if (!errors.isEmpty()) {
 return res.status(422).json({ errors: errors.array() })
 }

 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

Notice I used

 isLength()

 isEmail()

 isNumeric()

There are many more of these methods, all coming from validator.js, including:

 contains() , check if value contains the specified value
 equals() , check if value equals the specified value
 isAlpha()

 isAlphanumeric()

 isAscii()

 isBase64()

 isBoolean()

 isCurrency()

 isDecimal()

 isEmpty()

 isFQDN() , is a fully qualified domain name?
 isFloat()

 isHash()

 isHexColor()

 isIP()

 isIn() , check if the value is in an array of allowed values
 isInt()

 isJSON()

 isLatLong()

 isLength()

 isLowercase()

https://github.com/chriso/validator.js#validators

28

 isMobilePhone()

 isNumeric()

 isPostalCode()

 isURL()

 isUppercase()

 isWhitelisted() , checks the input against a whitelist of allowed characters

You can validate the input against a regular expression using matches() .

Dates can be checked using

 isAfter() , check if the entered date is after the one you pass
 isBefore() , check if the entered date is before the one you pass
 isISO8601()

 isRFC3339()

For exact details on how to use those validators, refer to
https://github.com/chriso/validator.js#validators.

All those checks can be combined by piping them:

check('name')
 .isAlpha()
 .isLength({ min: 10 })

If there is any error, the server automatically sends a response to communicate the error.
For example if the email is not valid, this is what will be returned:

{
 "errors": [{
 "location": "body",
 "msg": "Invalid value",
 "param": "email"
 }]
}

This default error can be overridden for each check you perform, using withMessage() :

check('name')
 .isAlpha()
 .withMessage('Must be only alphabetical chars')
 .isLength({ min: 10 })
 .withMessage('Must be at least 10 chars long')

https://github.com/chriso/validator.js#validators

29

What if you want to write your own special, custom validator? You can use the custom
validator.

In the callback function you can reject the validation either by throwing an exception, or by
returning a rejected promise:

app.post('/form', [
 check('name').isLength({ min: 3 }),
 check('email').custom(email => {
 if (alreadyHaveEmail(email)) {
 throw new Error('Email already registered')
 }
 }),
 check('age').isNumeric()
], (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

The custom validator:

check('email').custom(email => {
 if (alreadyHaveEmail(email)) {
 throw new Error('Email already registered')
 }
})

can be rewritten as

check('email').custom(email => {
 if (alreadyHaveEmail(email)) {
 return Promise.reject('Email already registered')
 }
})

30

Sanitizing input
You've seen how to validate input that comes from the outside world to your Express app.

There's one thing you quickly learn when you run a public-facing server: never trust the
input.

Even if you sanitize and make sure that people can't enter weird things using client-side
code, you'll still be subject to people using tools (even just the browser devtools) to POST
directly to your endpoints.

Or bots trying every possible combination of exploit known to humans.

What you need to do is sanitizing your input.

The express-validator package you already use to validate input can also conveniently
used to perform sanitization.

Say you have a POST endpoint that accepts the name, email and age parameters:

const express = require('express')
const app = express()

app.use(express.json())

app.post('/form', (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

You might validate it using:

const express = require('express')
const app = express()

app.use(express.json())

app.post('/form', [
 check('name').isLength({ min: 3 }),
 check('email').isEmail(),
 check('age').isNumeric()
], (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

https://express-validator.github.io/

31

You can add sanitization by piping the sanitization methods after the validation ones:

app.post('/form', [
 check('name').isLength({ min: 3 }).trim().escape(),
 check('email').isEmail().normalizeEmail(),
 check('age').isNumeric().trim().escape()
], (req, res) => {
 //...
})

Here I used the methods:

 trim() trims characters (whitespace by default) at the beginning and at the end of a
string
 escape() replaces < , > , & , ' , " and / with their corresponding HTML entities
 normalizeEmail() canonicalizes an email address. Accepts several options to
lowercase email addresses or subaddresses (e.g. flavio+newsletters@gmail.com)

Other sanitization methods:

 blacklist() remove characters that appear in the blacklist
 whitelist() remove characters that do not appear in the whitelist
 unescape() replaces HTML encoded entities with < , > , & , ' , " and /
 ltrim() like trim(), but only trims characters at the start of the string
 rtrim() like trim(), but only trims characters at the end of the string
 stripLow() remove ASCII control characters, which are normally invisible

Force conversion to a format:

 toBoolean() convert the input string to a boolean. Everything except for '0', 'false' and ''
returns true. In strict mode only '1' and 'true' return true
 toDate() convert the input string to a date, or null if the input is not a date
 toFloat() convert the input string to a float, or NaN if the input is not a float
 toInt() convert the input string to an integer, or NaN if the input is not an integer

Like with custom validators, you can create a custom sanitizer.

In the callback function you just return the sanitized value:

32

const sanitizeValue = value => {
 //sanitize...
}

app.post('/form', [
 check('value').customSanitizer(value => {
 return sanitizeValue(value)
 }),
], (req, res) => {
 const value = req.body.value
})

33

Handling forms
How to process forms using Express

This is an example of an HTML form:

<form method="POST" action="/submit-form">
 <input type="text" name="username" />
 <input type="submit" />
</form>

When the user presses the submit button, the browser will automatically make a POST
request to the /submit-form URL on the same origin of the page. The browser sends the
data contained, encoded as application/x-www-form-urlencoded . In this particular example,
the form data contains the username input field value.

Forms can also send data using the GET method, but the vast majority of the forms you'll
build will use POST .

The form data will be sent in the POST request body.

To extract it, you will need to use the express.urlencoded() middleware:

const express = require('express')
const app = express()

app.use(express.urlencoded({
 extended: true
}))

Now, you need to create a POST endpoint on the /submit-form route, and any data will be
available on Request.body :

app.post('/submit-form', (req, res) => {
 const username = req.body.username
 //...
 res.end()
})

Don't forget to validate the data before using it, using express-validator .

34

File uploads in forms
How to manage storing and handling files uploaded via forms, in Express

This is an example of an HTML form that allows a user to upload a file:

<form method="POST" action="/submit-form" enctype="multipart/form-data">
 <input type="file" name="document" />
 <input type="submit" />
</form>

Don't forget to add enctype="multipart/form-data" to the form, or files won't be
uploaded

When the user press the submit button, the browser will automatically make a POST request
to the /submit-form URL on the same origin of the page. The browser sends the data
contained, not encoded as as a normal form application/x-www-form-urlencoded , but as
 multipart/form-data .

Server-side, handling multipart data can be tricky and error prone, so we are going to use a
utility library called formidable. Here's the GitHub repo, it has over 4000 stars and is well-
maintained.

You can install it using:

npm install formidable

Then include it in your Node.js file:

const express = require('express')
const app = express()
const formidable = require('formidable')

Now, in the POST endpoint on the /submit-form route, we instantiate a new Formidable
form using formidable.IncomingForm() :

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm()
})

https://github.com/felixge/node-formidable

35

After doing so, we need to be able to parse the form. We can do so synchronously by
providing a callback, which means all files are processed, and once formidable is done, it
makes them available:

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm().parse(req, (err, fields, files) => {
 if (err) {
 console.error('Error', err)
 throw err
 }
 console.log('Fields', fields)
 console.log('Files', files)
 for (const file of Object.entries(files)) {
 console.log(file)
 }
 })
})

Or, you can use events instead of a callback. For example, to be notified when each file is
parsed, or other events such as completion of file processing, receiving a non-file field, or if
an error occurred:

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm().parse(req)
 .on('field', (name, field) => {
 console.log('Field', name, field)
 })
 .on('file', (name, file) => {
 console.log('Uploaded file', name, file)
 })
 .on('aborted', () => {
 console.error('Request aborted by the user')
 })
 .on('error', (err) => {
 console.error('Error', err)
 throw err
 })
 .on('end', () => {
 res.end()
 })
})

Whichever way you choose, you'll get one or more Formidable.File objects, which give you
information about the file uploaded. These are some of the methods you can call:

 file.size , the file size in bytes
 file.path , the path the file is written to
 file.name , the name of the file

36

 file.type , the MIME type of the file

The path defaults to the temporary folder and can be modified if you listen for the
 fileBegin event:

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm().parse(req)
 .on('fileBegin', (name, file) => {
 file.path = __dirname + '/uploads/' + file.name
 })
 .on('file', (name, file) => {
 console.log('Uploaded file', name, file)
 })
 //...
})

37

An Express HTTPS server with a self-
signed certificate
How to create a self-signed HTTPS certificate for Node.js to test apps locally

To be able to serve a site on HTTPS from localhost you need to create a self-signed
certificate.

A self-signed certificate is sufficent to establish a secure, HTTPS connection for
development purposes. Although browsers will complain that the certificate is self-signed
(and as such is not trusted).

To create the certificate you must have OpenSSL installed on your system.

You may have it installed already, just try typing openssl in your terminal.

If not, on a Mac you can install it using brew install openssl (if you use Homebrew).
Otherwise, search on Google "how to install openssl on ".

Once OpenSSL is installed, run this command:

openssl req -nodes -new -x509 -keyout server.key -out server.cert

You will be prompted to answer a few questions. The first is the country name:

Then your state or province:

State or Province Name (full name) [Some-State]:

Your city:

Generating a 1024 bit RSA private key
...........++++++
.........++++++
writing new private key to 'server.key'

You are about to be asked to enter information that will be incorporated into your certif
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/homebrew

38

Locality Name (eg, city) []:

...and your organization name:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

You can leave all of these empty.

Just remember to set this to localhost :

Common Name (e.g. server FQDN or YOUR name) []: localhost

...and to add your email address:

Email Address []:

That's it! Now you have 2 files in the folder where you ran the original command:

 server.cert is the self-signed certificate file
 server.key is the private key of the certificate

Both files will be needed to establish the HTTPS connection, and depending on how you are
going to setup your server, the process to use them will vary.

Those files need to be put in a place reachable by the application, and then you'll need to
configure the server to use them.

This is an example using the https core module and Express:

const https = require('https')
const app = express()

app.get('/', (req, res) => {
 res.send('Hello HTTPS!')
})

https.createServer({}, app).listen(3000, () => {
 console.log('Listening...')
})

Without adding the certificate, if I connect to https://localhost:3000 this is what the
browser will show:

without-cert

39

With the certificate in place:

const fs = require('fs')

//...

https.createServer({
 key: fs.readFileSync('server.key'),
 cert: fs.readFileSync('server.cert')
}, app).listen(3000, () => {
 console.log('Listening...')
})

Chrome will tell us that the certificate is invalid (since it's self-signed), and will ask us to
confirm before continuing (however, the HTTPS connection will still work):

with-cert

40

Setup Let's Encrypt for Express
How to set up HTTPS using the popular free solution Let's Encrypt

If you run a Node.js application on your own VPS, you'll need a solution for obtaining SSL
certificates.

Today, the standard for doing this is to use Let's Encrypt and Certbot, a tool from EFF, aka
Electronic Frontier Foundation, the leading nonprofit organization focused on privacy, free
speech, and in-general civil liberties in the digital world.

These are the steps we'll follow:

Install Certbot
Generate the SSL certificate using Certbot
Allow Express to serve static files
Confirm the domain
Obtain the certificate
Setup the renewal

Install Certbot
These instructions assume you are using Ubuntu, Debian or any other Linux distribution that
uses apt-get to manage packages:

sudo add-apt-repository ppa:certbot/certbot
sudo apt-get update
sudo apt-get install certbot

You can also install Certbot on a Mac, for testing purposes (requires Homebrew):

brew install certbot

However, you will need to link that to a real domain name in order for it to be useful.

Generate the SSL certificate using Certbot
Now that Certbot is installed, you can invoke it to generate the certificate. You must run this
as root:

https://letsencrypt.org/
https://certbot.eff.org/
https://www.eff.org/
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/homebrew

41

certbot certonly --manual

...or call sudo from a non-root user:

sudo certbot certonly --manual

This is the process in detail:

The installer will ask you to provide the domain of your website.

...it then asks for your email:

➜ sudo certbot certonly --manual
Password: XXXXXXXXXXXXXXXXXX
Saving debug log to /var/log/letsencrypt/letsencrypt.log
Plugins selected: Authenticator manual, Installer None
Enter email address (used for urgent renewal and security notices) (Enter 'c' to
cancel): your@email.com

...and to accept the ToS:

Please read the Terms of Service at
https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf. You must
agree in order to register with the ACME server at
https://acme-v02.api.letsencrypt.org/directory

(A)gree/(C)ancel: A

...and for permission to share your email address:

Would you be willing to share your email address with the Electronic Frontier
Foundation, a founding partner of the Let's Encrypt project and the non-profit
organization that develops Certbot? We'd like to send you email about our work
encrypting the web, EFF news, campaigns, and ways to support digital freedom.
-
(Y)es/(N)o: Y

...finally, we can enter the domain where we want to use the SSL certificate:

Please enter in your domain name(s) (comma and/or space separated) (Enter 'c'
to cancel): copesflavio.com

...the installer asks if it's ok to log your IP address:

42

Obtaining a new certificate
Performing the following challenges:
http-01 challenge for copesflavio.com

-
NOTE: The IP of this machine will be publicly logged as having requested this
certificate. If you're running certbot in manual mode on a machine that is not
your server, please ensure you're okay with that.

Are you OK with your IP being logged?
-
(Y)es/(N)o: y

...and finally we get to the verification phase!

Now, let's leave Certbot alone for a couple of minutes.

We need to verify we own the domain, by creating a file named TS_oZ2-

ji23jrio3j2irj3iroj_U51u1o0x7rrDY2E in the .well-known/acme-challenge/ folder. Pay
attention! The weird string I just pasted will change every single time you go through this
process.

You'll need to create the folder and the file, since they do not exist by default.

In this file you need to put the content that Certbot printed:

As for the filename - this string is unique each time you run Certbot.

Allow Express to serve static files
In order to serve that file from Express, you need to enable serving static files. You can
create a static folder, and add there the .well-known subfolder, then configure Express
like this:

-
Create a file containing just this data:

TS_oZ2-ji23jrio3j2irj3iroj_U51u1o0x7rrDY2E.1DzOo_voCOsrpddP_2kpoek2opeko2pke-UAPb21sW1c

And make it available on your web server at this URL:

http://copesflavio.com/.well-known/acme-challenge/TS_oZ2-ji23jrio3j2irj3iroj_U51u1o0x7rrD

TS_oZ2-ji23jrio3j2irj3iroj_U51u1o0x7rrDY2E.1DzOo_voCOsrpddP_2kpoek2opeko2pke-UAPb21sW1c

43

const express = require('express')
const app = express()

//...

app.use(express.static(__dirname + '/static', { dotfiles: 'allow' }))

//...

The dotfiles option is mandatory otherwise .well-known , which is a dotfile (as it starts
with a dot), won't be made visible. This is a security measure, because dotfiles can contain
sensitive information and they are better-off preserved by default.

Confirm the domain
Now run the application and make sure the file is reachable from the public internet. Go back
to Certbot, which is still running, and press ENTER to go on with the script.

Obtain the certificate
That's it! If all went well, Certbot created the certificate and the private key, and made them
available in a folder on your computer (and it will tell you which folder, of course).

Now, simply copy/paste the paths into your application to start using them to serve your
requests:

44

const fs = require('fs')
const https = require('https')
const app = express()

app.get('/', (req, res) => {
 res.send('Hello HTTPS!')
})

https
 .createServer(
 {
 key: fs.readFileSync('/etc/letsencrypt/path/to/key.pem'),
 cert: fs.readFileSync('/etc/letsencrypt/path/to/cert.pem'),
 ca: fs.readFileSync('/etc/letsencrypt/path/to/chain.pem'),
 },
 app
)
 .listen(443, () => {
 console.log('Listening...')
 })

Note that I made this server listen on port 443, so it needs to be run with root permissions.

Also, the server is exclusively running in HTTPS, because I used https.createServer() .
You can also deploy an HTTP server alongside this, by running:

http.createServer(app).listen(80, () => {
 console.log('Listening...')
})

https
 .createServer(
 {
 key: fs.readFileSync('/etc/letsencrypt/path/to/key.pem'),
 cert: fs.readFileSync('/etc/letsencrypt/path/to/cert.pem'),
 ca: fs.readFileSync('/etc/letsencrypt/path/to/chain.pem'),
 },
 app
)
 .listen(443, () => {
 console.log('Listening...')
 })

Setup the renewal
The SSL certificate is only going to be valid for 90 days, so you need to set up an automated
system for renewing it.

45

How? Using a cron job.

A cron job is a way to run tasks at a specified interval of time. It can be every week, every
minute, every month, and so on.

In our case, we'll run the renewal script twice per day, as recommended in the Certbot
documentation.

First, find out the absolute path of certbot on your system. I use type certbot on macOS
to get it, and in my case it's in /usr/local/bin/certbot .

Here's the script we need to run:

 certbot renew

This is the cron job entry:

0 */12 * * * root /usr/local/bin/certbot renew >/dev/null 2>&1

The above says 'run it every 12 hours, every day: at 00:00 and at 12:00'.

Tip: I generated this line using https://crontab-generator.org/

Add your newly-created script to the system's crontab using this command:

env EDITOR=pico crontab -e

This opens the pico editor (feel free to substitute with whichever editor you prefer). Simply
enter the new script, save, and the cron job is installed.

Once this is done, you can see the list of active cron jobs by running:

crontab -l

https://crontab-generator.org/

	The Express Handbook
	Request parameters
	Sending a response
	Sending a JSON response
	Manage Cookies
	Work with HTTP headers
	Redirects
	Routing
	CORS
	Templating
	Middleware
	Serving static files
	Send files
	Sessions
	Validating input
	Sanitizing input
	Handling forms
	File uploads in forms
	An Express HTTPS server with a self-signed certificate
	Setup Let's Encrypt for Express

